1. 首页
  2. 社会化

社交中用户价值、状态评估及算法匹配模型概述

接上篇文章中国社交领域到终局了吗?未来可能会有哪些发展和创新?–我的部分看法提到的用户价值和算法匹配,本文进行简单的概述,欢迎点好看和分享、评论,后面我再详细写各部分。

目录

一、用户自身价值评估

二、用户状态评估

三、匹配规则

四、各价值匹配度计算方法(初步)

五、标签举例(较多,本文先不附上)

六、应用(后面文章再写)

一、用户自身价值评估

人与人社交的基础:价值交换;

通过三大价值衡量(经济价值、外形价值、生活价值),分别按分值体现,从低到高1-10分;

经济价值计算方法:默认值值3 ,根据用户初始选择的行业、职位、收入,和默认值综合得到初始值;

外形价值计算方法:默认值值3 ,根据用户初始选择的头像和上传的照片,和默认值综合得到初始值;

生活价值计算方法:生活价值不便直接算分衡量,通过用户自选标签、内容分析等判断用户的性格和爱好,通过标签体现,作为匹配的两个要素。

社交中用户价值、状态评估及算法匹配模型概述
(传统匹配:用户与用户间大海捞针;)
社交中用户价值、状态评估及算法匹配模型概述
(推荐进行分发,让用户匹配合适自己的人)

二、用户内容评估

用户每次发布一条内容,可分为:

展示经济价值 、展示外形价值;同时,状态也会展示个人的性格和爱好。

用户发布内容后,平台分析其内容,对其人物价值和标签进行更新完善(初始阶段人工打分或标注,用户量增大,数据积累增多后通过机器学习由机器完成)。

若状态展示价值的,对其价值分数进行调整(经济,外形);展示性格的,为其增加性格标签;展示爱好的,对其增加爱好标签。

三、匹配规则

每个用户都是外在+内在的一个人物画像:外在=外形价值+经济价值,内在=性格+爱好。

匹配倾向占比:设z1=外形价值,z2=经济价值,z3=性格,z4=爱好; z1+z2+z3+z4=1。

用户发布内容时,判断其价值交换倾向,外在还是内在,为其做对应推荐。即找准用户此刻需求,基于历史积累的价值数据匹配。

举例:

找投资伙伴:倾向经济价值,z1=0.9,为其推荐经济价值匹配度高的人

找短期玩伴:倾向外形价值z2=0.8,为其推荐外形价值匹配度高的人

找人聊天:倾向性格 z3=0.9,为其推荐性格匹配度高的人

找人一起运动:倾向爱好 z4= 0.8,为其推荐爱好匹配度高的人

当用户没有明显需求倾向时,默认值 z1=0.3,z2=0.3, z3=0.2, z4=0.2;

再结合其历史匹配信息,结合协同过滤等推荐算法,为其做推荐。

社交中用户价值、状态评估及算法匹配模型概述

四、各价值匹配度计算方法(初步)

经济价值匹配度计算方法:

用户a的经济价值为 x1(百分制)

用户b的经济价值为 x2(百分制)

经济价值匹配度 x = 1-|x1-x2|/100;

外形价值匹配度计算方法:

用户a的 外形价值为 y1(百分制)

用户b的 外形价值为 y2(百分制)

外形价值匹配度 y = 1-|y1-y2|/100;

性格匹配度计算方法f 以及爱好匹配度计算方法i参考业界成熟的如协同过滤等推荐算法,如推荐短视频、电影、音乐等;

最终两两间匹配度= x*z1+y*z2+f*z3+i*z4

总结

篇幅有限,如果点赞、分享、评论的朋友多了我再详写如何分析状态并贴标签、算法细化、以及应用层面设计等;

抛砖引玉,期待交流

原文作者:杨家俊maverick

去年今日运营文章

  1. 2016:  Twitter调整消息流排序 不再严格按时间顺序(0)
  2. 2016:  传流媒体音乐服务Pandora将对外出售(0)
  3. 2016:  近5000万美国人承认通过使用交友平台寻另一半(0)
  4. 2016:  全球最大约会应用Badoo收购女性社交应用Lulu(0)
  5. 2016:  不要再盯着O2O了 B2B才是被忽视的大风口(0)

本文转载于杨家俊maverick,本文观点不代表爱运营立场,转载请联系原出处。如内容、图片有任何版权问题,请联系爱运营处理。

发表评论

登录后才能评论

联系我们

187-1891-2971

在线咨询:点击这里给我发消息

邮件:admin@iyunying.org

工作时间:周一至周五,9:30-18:30,节假日休息

QR code